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A B S T R A C T

Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession
years in the United States and has reached record levels in 2017. With transportation accounting
for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways
to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although
there is considerable understanding of the various factors that influence household vehicular
travel, there is little knowledge of their relative contribution to explaining variance in household
VMT. This paper presents a holistic analysis to identify the relative contribution of socio-eco-
nomic and demographic characteristics, built environment attributes, residential self-selection
effects, and social and spatial dependency effects in explaining household VMT production. The
modeling framework employs a simultaneous equations model of residential location (density)
choice and household VMT generation. The analysis is performed using household travel survey
data from the New York metropolitan region. Model results showed insignificant spatial de-
pendency effects, with socio-demographic variables explaining 33 percent, density (as a key
measure of built environment attributes) explaining 12 percent, and self-selection effects ex-
plaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44
percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic
factors, calling for further research in this domain to better understand the relative contribution
of various drivers of household VMT.

1. Introduction

Vehicle miles of travel (VMT), a key measure of travel demand, is on the rise in the United States and countries around the world
(Bastian et al., 2016; Polzin, 2016). Predictions of the peaking of travel, largely made during the period of the great recession, are
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proving to have been premature (Polzin, 2016). While there are signs of some shifts in residential location and travel choices, most
notably related to the lower levels of vehicle ownership and mobility depicted by millennials and a move towards urban living among
different generations (Badger, 2014; Logan, 2014), the fact of the matter is that total VMT has grown steadily in the United States
since 2012 and has reached record levels in 2017 even after accounting for population and employment growth (Economic Research,
2017). Increases in VMT are associated with higher levels of congestion and delay, energy consumption and greenhouse gas emis-
sions, and roadway crashes (Sacramento Area Council of Governments, 2016) – adversely affecting human health, quality of life, and
community resiliency and sustainability (Levy et al., 2010). The growing presence of transportation network companies that provide
mobility-as-a-service and the potential advent of autonomous vehicles may further contribute to an increase in VMT as travel be-
comes increasingly convenient and less burdensome, thus resulting in a reduced value of travel time.

For the reasons noted above, planning professionals in cities around the world are continuously seeking ways to reduce vehicle
miles of travel without inhibiting household and business activity engagement. Formulating policies, strategies, and transportation
infrastructure improvements that would reduce VMT is difficult, however, in the absence of an accurate understanding of the
contribution of various factors to total VMT. This paper aims to provide a comprehensive understanding and quantification of the
relative effects of various factors on household vehicle miles of travel. The analysis focuses on household VMT because it constitutes
more than 75% of total VMT in the United States (AASHTO, 2013), and hence strategies aimed at curbing household VMT would
likely yield the most benefits to communities.

There is undoubtedly an abundance of research that has examined the effects of various factors on household VMT in various
geographic contexts (e.g., Millard-Ball and Schipper, 2011; Bastian et al., 2016). However, research to date has not adequately
documented the relative contribution of various factors to explaining household VMT, thus calling for a more holistic and compre-
hensive analysis that is capable of doing so. While some studies explain the effects of socio-economic and demographic characteristics
on VMT, others focus on examining the effects of built environment attributes on VMT. These studies are undoubtedly valuable, but it
is also important to quantify the relative contribution of different factors to household VMT. By doing so, it is envisioned that
planners and policy makers will be able to develop targeted policies that more effectively reduce vehicular travel. If, for example,
built environment attributes are found to explain the variation in household VMT more than other factors (such as socio-economic
and demographic factors), then decision-makers may realize the most benefits (in terms of VMT reductions) by implementing policies
that foster more walkable, dense, and diverse built environments. On the other hand, if social interaction and spatial dependency
effects are found to contribute more heavily to explaining variance in household VMT (relative to other factors), then policy makers
may be well served by focusing resources on social media and public information campaigns that would facilitate spread of awareness
(say, about use of alternative modes of transportation) through network diffusion mechanisms. While literature provides some in-
formation about the effects of these factors when viewed independently or in pairs, there is a lack of research dedicated to explaining
the relative contribution of various factors in a comprehensive framework. This research effort is aimed at addressing this critical gap
in the existing literature. Not only does this paper aim to offer insights on the relative contribution of various factors to household
VMT, but the paper also aims to offer a rigorous methodological framework that is generalizable and can be applied in any geo-
graphical context. Thus this study is motivated by both methodological and empirical objectives with a view to help advance the
development of sustainable communities.

This paper considers four different factors that may explain the variance in household VMT. These include household and person
socio-economic and demographic characteristics, residential built environment attributes, residential self-selection (i.e., lifestyle
preference) effects, and human social and spatial dependency effects. As noted earlier, while there are a number of research efforts
that have examined the effects of subsets of these factors on household or personal VMT, there is no study that examines the relative
contribution of each of these effects on household VMT in a singular holistic framework. The four factors considered in this paper are
those that have been shown to influence household VMT in significant ways. Household socio-economic and demographic char-
acteristics, such as household size, number of children, number of workers, and household income affect household VMT. Built
environment attributes including land use density, population and employment density, parking availability and pricing, distance
from residence to work centers, and multimodal accessibility (to destinations) affect household VMT. Residential self-selection effects
capture the notion that individuals may choose to locate (live and work) in built environments that are consistent with their attitudes
(e.g., environmental sensitivity) and lifestyle preferences (e.g., car-free lifestyle). The fourth and final factor considered in this paper
is the socio-spatial dependence effect. Household VMT may be shaped by social interaction and spatial dependency effects, capturing
influences engendered by people’s interactions and geographic proximity. It should be noted that, even after accounting for these four
factors, a residual unexplained effect will inevitably exist.

The analysis in this paper is performed on the 2010–2011 Regional Household Travel Survey (RHTS) of the New York
Metropolitan Transportation Council (NYMTC). From the fall of 2010 through the fall of 2011, travel data was collected from 19,000
households across 28 counties in New York, New Jersey, and Connecticut (New York Metropolitan Transportation Council, 2011).
After merging built environment data with the travel survey records, a joint model of residential location (density) choice and
household VMT – accounting for residential self-selection and socio-spatial dependency effects – is estimated to unravel the relative
contribution of various factors in explaining variance in household VMT.

The remainder of the paper is organized as follows. The next section presents a brief discussion of factors that influence household
VMT. The third section presents a data description, the fourth section offers a description of the methodology, and the fifth section
presents model estimation results. The sixth and final section offers a discussion and interpretation of the results together with
concluding thoughts.
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2. Explaining household vehicle miles of travel

Exploring factors that influence household and person VMT has been a topic of considerable interest for several decades, largely
due to the contribution of VMT to traffic congestion, emissions, and energy consumption. Cervero and Kockelman (1997) used data
from the 1990 San Francisco Bay Area travel survey to examine the role of built environment characteristics in shaping VMT and
mode choice. They found that density, land use diversity, and pedestrian-oriented designs reduce trip rates, and encourage non-
motorized mode use. More recently, Zhang et al. (2012) re-examined the relationship between land use and VMT using data from five
metropolitan areas in the US. In addition to corroborating earlier findings, they identify urban area size, status of the existing built
environment, transit service coverage and service quality, and land use decision-making processes as major factors that influence
household VMT. Based on data from 370 urbanized areas in the United States, Cervero and Murakami (2010) found that population
size is significantly positively correlated with VMT per capita. Krizek (2003) studied changes in travel behavior that result from
changes in neighborhood accessibility and concluded that relocating to areas with high accessibility decreases household VMT. Based
on a meta-analysis of the literature on built environment and travel behavior, Ewing and Cervero (2010) conclude that VMT is most
strongly influenced by accessibility to destinations. You et al. (2014) estimate a model to predict the total motorized mileage of a
household based on various socio-demographic, built environment, and network accessibility measures. Not only do they find that
socio-economic characteristics influence household VMT, but they also find that zonal accessibility to destinations is an important
predictor of VMT. A number of studies have shown that there is a significant association between built environment attributes and
non-motorized travel (walking and bicycling) (e.g., Frank and Engelke, 2001; Lee and Moudon, 2006; Copperman and Bhat, 2007;
Cao, 2010).

In addition to exploring the role of observed covariates, a number of studies have attempted to account for self-selection effects
when examining the influence of various attributes on household VMT. Brownstone and Golob (2009) used the California subsample
of the 2001 National Household Travel Survey to estimate a joint model of residential density, vehicle use, and fuel consumption that
takes residential self-selection effects into account. They infer that an increase in density of 1000 dwelling units per square mile in a
zone equates to a decrease of 1200 VMT per year for a representative household. Using a quasi-longitudinal design that takes self-
selection effects into account, Handy et al. (2005, 2006) studied the relationship between neighborhood characteristics and travel
behavior. They report that built environment attributes significantly impact travel behavior, even after accounting for the effects of
neighborhood self-selection.

Several studies have attempted to unravel the extent to which different factors contribute to variance in vehicular travel, but do so
in the context of examining the influence of one or two factors at a time. For example, Zhou and Kockelman (2008) used a sample
selection model, and find that self-selection accounts for anywhere between 10 and 42% of the total influence of the built en-
vironment on VMT. Bhat and colleagues (see, for example, Bhat and Guo (2007), Pinjari et al. (2009), and Bhat et al. (2016)) present
methodologies to control for self-selection effects, and apply their frameworks to study the effects of built environment attributes on
residential location choices and time-use/mobility-related decisions. They find that self-selection contributes anywhere from 4% to
58%, depending upon the precise time-use/mobility-related choice dimension being examined. Both Cao and Fan (2012) and Bhat
et al. (2014) find that self-selection accounts for 28% of the overall built environment effect, while the remaining 72% constitutes the
true built environment effect. In a recent study using data from the Greater Salt Lake region, Ewing et al. (2016) report that the
(direct and total) effects of the built environment on VMT is about twice as much as the residential self-selection effect.

Other studies have explored the role of spatial dependency effects in shaping variables that influence household VMT (though, to
our knowledge, the current paper is the first to directly consider spatial effects in the context of household VMT). As identified by
Bhat et al. (2017), there has been recognition in the travel behavior literature that household and individual travel decisions are
influenced by spatial interaction effects and social group effects (through a peer effect or a peer pressure effect) inside urban
communities (Salvy et al., 2009; Ferdous et al., 2011). For example, Dill and Voros (2007) found that if an individual’s co-workers
bicycle to work, the individual is more likely to bicycle to work too. The notion of norms in one’s social or neighborhood group
impacting bicycling behavior is also consistent with the theory of planned behavior and the theory of interpersonal behavior (see
Heinen et al., 2010). As another example of earlier travel behavior studies that consider spatial/social interactions, Adjemian et al.
(2010) investigate the spatial inter-dependence in vehicle type choice using data from the 2000 San Francisco Bay Area Travel Survey
and conclude that spatial dependence effects are significant in explaining the ownership of nearly every vehicle body type in the
study region. Similarly, Paleti et al. (2013a) use a multinomial probit formulation that incorporates spatial interaction effects in the
analysis of household vehicle fleet composition. They use mean distance between households to capture the spatial dependence
effect, and find that spatial dependency plays a significant role in explaining vehicle acquisition choices. McDonald (2007) analyzes
the association between neighborhood social environment and children’s decision to walk to school, and finds evidence that parental
perception of neighborhood cohesion greatly influences the decision of children walking to school. Bhat et al. (2017) find significant
residential location-based spatial dependence in their analysis of individual-level bicycling frequency, using data from the 2014 Puget
Sound Household Travel Survey, while Bhat et al. (2010) and Sener and Bhat (2012) similarly observe spatial dependency effects in
the context of individual daily activity participation using the 2000 San Francisco Bay Area Travel Survey.

This illustrative review of the literature reveals the emergence of at least four factors that are potentially key determinants of
household VMT. While past research in this domain has examined the effects of different attributes on household VMT in isolation
from one another, this paper aims to quantify the relative contribution of each of these effects on household VMT, and thus contributes
significantly to better understanding the role of each factor in shaping VMT. Even after accounting for these four factors, there will
inevitably be a remaining unexplained portion of household VMT variance. The size of this portion is estimated as well.
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3. Data and sample description

The data used in this study is derived from the 2010–2011 Regional Household Travel Survey (RHTS) conducted by the New York
Metropolitan Transportation Council (NYMTC) and the North Jersey Transportation Planning Authority (NJTPA). The RHTS col-
lected travel information for each household resident in the sample for one weekday. After extensive data cleaning, the household
level data set included information for 14,791 households that provided complete information on a host of socio-economic, demo-
graphic, location, and travel variables of importance to this study. The sample contains households residing in the New York me-
tropolitan region, including parts of the States of New Jersey and Connecticut.

The dependent variable of interest in this paper is weekday household vehicle miles of travel (VMT), largely because this measure can
be obtained from most household travel survey data sets. Trip records provided by individual household members were used to derive
VMT estimates at the household level. Household VMT is defined in this paper as being exclusively based on trips that are made by
personal vehicle only. The household VMT was computed by aggregating distance traveled (in miles) across the personal vehicle trip
records, while explicitly ensuring that no trip was double-counted in the VMT calculation. Thus, for example, if two household members
travel together, only the mileage associated with the trip reported by the driver is counted towards calculating VMT. This was done to
ensure that a clear distinction is drawn between vehicle miles of travel (VMT) and person miles of travel (PMT), and focus the analysis
in this paper exclusively on household-level VMT, which is naturally influenced by the extent to which household members travel
jointly (rideshare or carpool). After calculating household VMT and appending the value to household records, data describing the
traffic analysis zone (TAZ) of residence was also joined to the data set. Households were geo-located at the TAZ level, and data
describing population and employment characteristics of the residence TAZ could be easily appended to the household travel survey
data set.

For the current study, a random sample of 3,000 households was extracted for analysis purposes. Comparisons were performed to
ensure that the random sample is representative of the original sample of 14,791 households. A smaller random sample was chosen
for analysis purposes to avoid the risk of inflated test statistics that often accompanies model estimation with large sample sizes. A
sample size of 3,000 households was considered sizeable enough to obtain reliable parameter estimates while avoiding artificially
inflated test statistics that could lead to erroneous inferences. Table 1 provides an overview of the descriptive characteristics of the
sample. The density of the residential zone was calculated by adding population and employment, and dividing the sum by the area of
the zone. Then, each household was classified into a residential-zone density category depending on whether it fell into the top third,
middle third, or bottom third of zones ranked by land use density.

The use of residential-zone density as the sole descriptor of the built environment is not without reason. In general, density is a
measure that is easy to quantify, understand, and interpret. There are many other measures of built environment, but they are not
necessarily as well-defined and quantified. Measures such as walkability index, pedestrian-friendliness, transit connectivity and
service, land use diversity, and access to destinations are appealing, but not as easily defined. Density has been used extensively to
characterize the built environment (e.g., Kim and Brownstone, 2013; Paleti et al., 2013b; Cao and Fan, 2012; and Bhat et al., 2016).
In addition, using density alone as the built environment measure allows a clean identification of built environment and residential
self-selection effects in explaining household VMT without problems of multi-collinearity of density with other built environment
characteristics. The reader is also referred to an online supplement at http://www.caee.utexas.edu/prof/bhat/ABSTRACTS/
HouseholdVMT/OnlineSupplement.pdf discussing this issue in some more detail. In the rest of this paper, we will use the terms
density and the built environment interchangeably, for ease in presentation.

Average household VMT is found to be 35 miles; an examination of the distribution of VMT showed that 23.6 percent of the
households had zero VMT (which means the household members made absolutely no personal vehicle trips; for our empirical
analysis, the VMT for these households is assigned a nominal value of 1mile, so that the logarithm of VMT, used as the dependent
variable in the modeling, is zero). 20.9 percent of the households had VMT equal to or greater than 60miles. In this research study,
residential location (density) choice (three-category discrete dependent variable) and household VMT are modeled jointly to unravel
the contribution of various effects of interest. The remainder of Table 1 provides descriptive statistics for a few socio-economic
variables. Among single persons, the largest percentage reside in high density areas; the opposite is true for couples and nuclear
families. Among households with low income, the largest share resides in higher density zones. As income increases, the proportions
shift, with the larger shares seen in the lower density zones. This is consistent with expectations that higher income individuals seek
to reside in suburban lower density areas characterized by good schools, safe neighborhoods, open spaces, and larger homes. Among
Caucasians, the largest percentages reside in low density neighborhoods. Minority households show an opposite pattern, with larger
percentages residing in high density neighborhoods. Other descriptive results are also as expected.

Fig. 1 depicts the distribution of households in each land use density category by VMT. The figure shows an overall pattern that is
consistent with expectations. For example, only 10.9 percent of households in the low density category report zero VMT, while 39.7
percent of households in the high density category report zero VMT. Conversely, 30.9 percent of households in the low density
category report more than 60 vehicle miles of travel; but only 11.1 percent of high density households do so. For households in the
high density category, the percent of households reporting higher levels of VMT drops noticeably (except for a slight anomaly in
transitioning between the 40–60mile range and the> 60mile range). The overall patterns are quite discernible and consistent with
expectations that households in higher density locations generate fewer VMT, possibly due to greater access to destinations and
alternative modes of transportation. However, as noted in the literature, other effects are likely to be at play as well; households
residing in different neighborhood densities differ with respect to socio-economic and demographic characteristics and lifestyle
preferences (leading to residential self-selection effects). In addition, there may be spatial dependency effects (i.e., households’
behavior is shaped by their interactions with and observation of other households in geographic proximity) that shape household
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VMT. The objective of this paper is to quantify the relative contributions of each of these factors to explaining household VMT.
It should be noted that the choice of New York as the region for analysis is based on a few key considerations. To unravel the

contribution of different factors to explaining household VMT, it is desirable to analyze a geographic context where there is con-
siderable heterogeneity in built environment attributes, transit service levels, and socio-economic characteristics. The New York
metropolitan region offers rich variance in the dependent variable (household VMT) and explanatory factors of interest. In addition,
with increasing levels of urbanization and challenges faced by large cities around the world, it was considered useful to analyze a
large metropolitan context such as New York.

Table 1
Descriptive characteristics of the analysis sample (N=3,000 households).

Dependent variable: Residential location (discrete) variable

Location density [(pop+ emp)/area] Number of observations (%)

Low 1,000 (33.33)
Medium 1,000 (33.33)
High 1,000 (33.33)

Dependent variable: Household VMT (continuous) variable

Variable Mean Std Dev Min Max

Vehicle miles traveled (miles) 35.1 42.0 0 326.9
Natural log of Vehicle Miles Traveled 2.6 1.71 0 5.79

Independent variables distribution

Variable Mean Std Dev Min Max

Number of workers in household 1.25 0.86 0.00 6.00
Presence of students in household (dummy) 0.34 0.47 0.00 1.00
Fraction of unemployed in household 0.13 0.27 0.00 1.00

Residential-zone density choice by explanatory variable

Low Medium High Total

Family structure variables 1000 (33.3) 1000 (33.3) 1000 (33.3) 3000 (100)
Single person, N (%) 260 (28.2) 309 (33.5) 354 (38.4) 923 (100)
Single parent, N (%) 26 (30.6) 31 (36.5) 28 (32.9) 85 (100)
Couple, N (%) 320 (38.9) 257 (31.2) 246 (29.9) 823 (100)
Nuclear family, N (%) 201 (37.6) 182 (34.1) 151 (28.3) 534 (100)
Joint family, N (%) 193 (30.4) 221 (34.8) 221 (34.8) 635 (100)

Household income variables [US$/year] 1000 (33.3) 1000 (33.3) 1000 (33.3) 3000 (100)
Below 30,000, N (%) 135 (23.3) 219 (37.8) 226 (39) 580 (100)
30,000 to 75,000, N (%) 283 (31.2) 311 (34.3) 313 (34.5) 907 (100)
> 75,000 to 150,000, N (%) 381 (36.8) 324 (31.3) 330 (31.9) 1035 (100)
Above 150,000, N (%) 201 (42.1) 146 (30.5) 131 (27.4) 478 (100)

Household race and ethnicity 1000 (33.3) 1000 (33.3) 1000 (33.3) 3000 (100)
Caucasian, N (%) 788 (36.4) 719 (33.2) 659 (30.4) 2166 (100)
African-American, N (%) 72 (20.7) 131 (37.8) 144 (41.5) 347 (10)
Hispanic, N (%) 36 (16.2) 84 (37.8) 102 (45.9) 222 (100)
Asian and other, N (%) 104 (39.2) 66 (24.9) 95 (35.8) 265 (100)

Household unit type 1000 (33.3) 1000 (33.3) 1000 (33.3) 3000 (100)
Villa detached residence, N (%) 650 (41.9) 522 (33.7) 379 (24.4) 1551 (100)
Villa attached residence, N (%) 81 (36.3) 71 (31.8) 71 (31.8) 223 (100)
Condo residence, N (%) 269 (21.9) 407 (33.2) 550 (44.9) 1226 (100)

Households with members in age-groups
Age below 16, N (%) 247 (34.1) 247 (34.1) 231 (31.8) 725 (100)
Age 16 to 35, N (%) 286 (32.2) 300 (33.8) 302 (34.0) 888 (100)
Age 35 to 55, N (%) 501 (32.5) 527 (34.2) 515 (33.4) 1543 (100)
Age 55 to 65, N (%) 410 (34.3) 409 (34.2) 378 (31.6) 1197 (100)
Age above 65, N (%) 197 (33.9) 197 (33.9) 187 (32.2) 581 (100)
Totala 1641 1680 1613 4934

Number of vehicles in the household 1000 (33.3) 1000 (33.3) 1000 (33.3) 3000 (100)
Zero vehicles, N (%) 71 (12.3) 169 (29.3) 336 (58.3) 576 (100)
One vehicle, N (%) 291 (31.1) 320 (34.2) 324 (34.6) 935 (100)
Two or more vehicles, N (%) 638 (42.8) 511 (34.3) 340 (22.8) 1489 (100)

a A household can belong to more than one category; hence the columns do not necessarily add to 1,000 or 3,000.
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4. Modeling methodology

In this section, a brief overview of the modeling methodology is offered. The formulation for each variable is presented first,
followed by a presentation of the structure and estimation procedure for the multi-dimensional model system of residential location
(density) choice and household VMT production.

4.1. Nominal unordered variable (residential choice)

Let I (I⩾ 2) be the number of alternatives corresponding to the nominal variable (residential location in the empirical analysis)
and let i be the corresponding index (i=1, 2, 3, …, I). Let Q be the number of households in the sample, and let q be the corre-
sponding index (q=1, 2, …, Q). Note that I may vary across households in a general discrete choice case, but the same number of
alternatives is assumed across all households in this study. Using a typical utility maximizing framework, the utility for alternative i
and household q may be written as:

= ′ +β xU ε ,qi qi qi (1)

where xqi is a (K×1)-column vector of exogenous attributes, β is a (K×1)-column vector of corresponding coefficients, and εqi is a
normal scalar error term. Let the variance-covariance matrix of the vertically stacked vector of errors = … ′ε ε ε ε[( , , , ) ]q q q qI1 2 be Λ. The
size of εq is ×I( 1), and the size of Λ is ×I I( ). The error vector εq is identically and independently distributed across households. The
model above may be written in a more compact form by defining the following vectors and matrices: = … ′U U U U( , , , )q q q qI1 2 ×I( 1
vector), = … ′x x x x x( , , , , )q q q q qI1 2 3 ×I K( matrix), and =V x βq q ×I( 1 vector). Then, ∼U VMVN Λ( , ),q I q where VMVN Λ( , )I q is the mul-
tivariate normal distribution of I dimensions with mean vector Vq and covariance Λ. Further, for future use, define = ′ ′ … ′ ′U U U U( , , , )Q1 2

×QI( 1 vector), = ′ ′ ′ … ′ ′x x x x x( , , , , )Q1 2 3 ×QI K( matrix), = ′ ′ … ′ ′ε ε ε ε[( , , , ) ]Q1 2 , =V xβ ×QI( 1 vector), so that ∼ ⊗U VMVN IDEN Λ( , ),QI Q

where IDENQ is an identity matrix of size Q. Consider now that household q chooses alternative m. Under the utility maximization
paradigm, −U Uqi qm must be less than zero for all ≠i m, since the household chose alternative m. Let = − ≠u U U i m( )qim qi qm , and stack
the latent utility differentials into an − ×I[( 1) 1] vector = … ′ ≠u u u u i m[( , , , ) ; ]q q m q m qIm1 2 . Also, let = ′ ′ … ′ ′ − ×u u u u Q I( , , , ) [ ( 1) 1]Q1 2
vector. For future use, also define the utility differences with respect to the first alternative as = − ≠u U U i( 1)qi qi q1 1 ,
⌣ = … ′u u u[( , , ) ],q q qI21 1 and ⌣ = ⌣′ ⌣′ … ⌣′ ′ − ×u u u u Q I( , , , ) [ ( 1) 1]Q1 2 .

In the context of the formulation above, several important identification issues (see Bhat (2015) for details) need to be addressed
(in addition to the usual identification consideration that one of the alternatives has to be used as the base when introducing
alternative-specific constants and variables that do not vary across the I alternatives). First, only the covariance matrix of the error
differences is estimable. Taking the difference with respect to the first alternative, only the elements of the covariance matrix ⌣Λ of ⌣uq

are estimable (for each and all q). Thus, Λ is constructed from ⌣Λ by adding an additional row on top and an additional column to the
left. All elements of this additional row and column are filled with values of zeros. Second, an additional scale normalization needs to
be imposed on ⌣Λ . For this, we normalize the first element of ⌣Λ to the value of one. Third, in MNP models, identification is tenuous
when only household-specific covariates are used (see Keane (1992) and Munkin and Trivedi (2008)). In particular, exclusion re-
strictions are needed in the form of at least one household characteristic being excluded from each alternative’s utility in addition to
being excluded from a base alternative (but appearing in some other utilities).

4.2. Continuous dependent variable

In the empirical context of the current paper, the continuous variable is the natural logarithm of household vehicle miles of travel
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Fig. 1. Distribution of households in each density category by VMT class.
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(VMT). Let = ′ +γ zy ηq q q in the usual linear regression fashion, where the vector zq of size ×C( 1) includes a constant, exogenous
variables, and dummy variables for each household location alternative (except a base alternative).1 γ is a corresponding ×C( 1)
vector of coefficients. Let ηq be a normally distributed idiosyncratic term distributed independently and identically across households
with mean zero and a variance of σ .2 To the above equation, a spatial dependence component is now added using a typical spatial lag
dependence specification as follows2:

∑= + ′ +
′=

′ ′ γ zy δ w y ηq
q

Q

qq q q q
1 (2)

The ′wqq terms are the elements of an exogenously defined distance-based spatial/social weight matrix W corresponding to ob-
servations q and ′q (with =w 0qq and ∑ =′ ′w 1q qq ), and δ <δ(| | 1) is the spatial autoregressive parameter. The weights ′wqq can take
the form of a discrete function such as a contiguity specification ( ′wqq =1 if the households q and ′q are adjacent and 0 otherwise) or a
specification based on a spatial/social distance threshold ( = ∑′ ′ ′ ′w c c/ ,qq qq q qq where ′cqq is a dummy variable taking the value 1 if the
household ′q is within the distance threshold and 0 otherwise). It can also take a continuous form such as those based on the inverse
of distance ′dqq and its power functions = ∑ >′ ′ ′ ′

−[ ]w n( (1/d ) 1/d )( 0),qq qq
n

q qq
n 1 the inverse of exponential distance, and the shared edge

length ∼
′dqq between households (or observation units) ̃ ̃= ∑∼ ∼

′ ′ ′ ′ ′ ′w c d c d/( )qq qq qq q qq qq (where ̃ ′cqq is a dummy variable taking the value 1
if q and ′q are adjoining based on some pre-specified spatial criteria, and 0 otherwise).3

Eq. (2) can be written equivalently in vector notation as:

= + +y y zγ ηδ W , (3)

where = … ′y y y y( , , , )Q1 2 and = … ′η η η η( , , , )Q1 2 are (Q× 1) vectors, = … ′z z z z( , , , )Q1 2 is a (Q×C) matrix of exogenous variables for all Q
units, and, for future use, = ⊗η σIDENCov( ) Q

2. Defining = − −δS IDEN W[ ]Q
1 [(Q×Q) matrix], Eq. (3) may be re-written as:4

= +y Szγ Sη (4)

4.3. The joint model system

The potential endogeneity of residential choice (that is, the self-selection of residence based on VMT desires) may be incorporated

1 Even though we use the household location alternative as a determinant variable in the VMT equation, it is important to note that the system being estimated here
is a joint model of residential location and VMT. That is, both residential location and VMT are endogenous variables (are co-determined) because, as we discuss later,
we allow a correlation between the error vector ⌣uq in the residential location equation and the error term ηq in the VMT equation. Thus, any endogenous effect of
residential location is a “true” causal effect after removing any spurious associations caused by neighborhood self-selection effects. For example, a household that is
“green” may self-select into dense neighborhoods because of ease of access by walk to activity opportunities. If this “green” lifestyle is unobserved, it would result in a
negative correlation between ⌣uq for the high density location alternative and the error term in the VMT equation. By recognizing and incorporating this correlation in
a joint model of residential location choice and VMT (which reflects residential self-selection), we are then able to assess any “true” causal effects of high density living
on household VMT (through the impact of the high density dummy variable in the VMT equation).
2 The decision-making unit for analysis purposes is the household, but the density associated with a household corresponds to the zone of residence of the

household.
3 In the subsequent empirical analysis, the authors tested two different versions of the contiguity specification: a weight matrix based on defining “neighbors” of a

household as other households in the same traffic analysis zone (TAZ), and an alternative weight matrix based on defining “neighbors” as other households in the same
TAZ or an adjacent TAZ. All other weight matrix specifications listed in the main text were also tested.
4 That spatial dependence is an important factor that influences travel behavior has already been established and recognized, as discussed earlier in the penultimate

paragraph of Section 2. Further, as discussed by Anselin (2003) and Elhorst and Vega (2013), this spatial dependence may or may not include spatial spillovers (in
which a change in an exogenous variable at one location affects the dependent variable at another location), and may or may not include global spillover effects (in
which a change in an exogenous variable affects the dependent variable at all other locations, even though this effect fades with spatial separation). A complete
discussion of these issues is beyond the scope of this paper. But suffice it to say that the spatial dependency assumed in this paper (which corresponds to the standard
spatial lag model) corresponds to a global spatial spilllover effect as in Eq. (4). At the same time, the spatial lag model also allows spatial autocorrelation dependence in
the unobserved component η. Our reason for using the spatial lag model is based on two theoretical considerations rather than a data-driven statistical fit exercise. The
first consideration, which we actually have not seen explicitly stated in the literature, is that the spatial lag model of Eq. (3) corresponds to the reduced form of Eq. (4),
which itself may be written as y= SE(y)+ Sη, or as E(y)= SE(y). What this implies is that the global spillover applies to the expected values of the dependent
variable. We argue that this is the correct way to model spillovers, given that the estimation is being done on but a sample of the population. That is, while social/
spatial spillover effects happen through interactions and knowledge spillovers that influence a person’s dependent variable behavior (VMT in the current context)
based on other individuals’ decisions on the dependent variable at other locations in the population (that is, through a relationship among the elements of the y vector
in the population, as documented in Section 2), it is impossible to represent every individual in spatial or social space. Thus, a sampled individual at a particular
location can only be considered as representative of many other non-sampled individuals at that location. Thus, it is intrinsically more appropriate to consider that,
because we are using only a sample, the spillover effects operate on the expected values. The second consideration for using a spatial lag model is that we require
symmetry in the spillover effects and the spatial autocorrelation generated through the unobserved individual-specific error terms. This is because, if for some reason,
we drop an independent variable from the model so that the effect of the variable is moved from the substantive portion of the model to the unobserved portion (or if
we add an independent variable so that part of the unobserved portion is now included with the observed portion), the implied spatial dependence should not change.
The only spatial structure that guarantees this is the spatial lag model, not the other spatial dependence structures identified in the literature. Thus, on pure theoretical
and logical grounds, spatial dependency in VMT models (and in travel behavior models in general) should be developed using the spatial lag formulation we use here.
In essence, while some papers (see Pinkse and Slade (2010) and Pace and Zhu (2012)) have criticized the spatial lag model because it uses a single autocorrelation
coefficient to characterize spatial dependence, or because it maintains the same autocorrelation spillover effect across all exogenous variables (and across the
exogenous variables and the unobserved error term), we submit that these criticisms are themselves misguided because they miss out on the fundamental point that the
basic specification of spatial dependence must not change whether a determining variable is in the observed portion or in the unobserved portion.
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in the equations above by allowing a covariance in the error terms between the discrete and continuous dependent variables. Let the
covariance matrix of the ×I[ 1] vector ⌣ = ⌣y u η( , )q q q be specified as:

⌣ = ⎡
⎣⎢

⌣

′
⎤
⎦⎥

y
σ

Λ Ψ
Ψ

Cov( )q 2 (5)

where Ψ is an − ×I( 1) 1 vector capturing covariance effects between the ⏝uq vector and the ηq scalar (the level of covariance is
assumed to be identical across households). All elements of the symmetric matrix above (of size ×I I) are identifiable after the scale
normalization of the first element of ⌣Λ (as discussed earlier). If the aspatial regression = ′ +γ zy ηq q q were adopted, then, by spe-
cification, the covariance of ⌣yq is identically and independently distributed across observations. However, the situation changes
dramatically as soon as the spatial structure of Eq. (3) is used. In particular, dependence across yq values is generated by the spatial
structure, and this further permeates in a secondary fashion into covariations in the utilities of alternatives of one household and the
yq measure of another household. To explicate this unique spatial dependency formulation, arrange the latent utility values of
households and the error term vector in the continuous dependent variable across all households = … ′η η η η( , , , )1 2 Q into a

− + × = ×Q I Q QI[ ( 1) ] 1 1 vector
⏝⏝

⏝= ′ ′ ′uη u η( , ) . This vector is distributed with mean zero and a ×QI QI covariance matrix given by:

⌣ = ⎡

⎣
⎢

⊗ ⌣ ⊗
⊗ ′ ⊗

⎤

⎦
⎥u η

σ
IDEN Λ IDEN Ψ
IDEN Ψ IDEN

Cov( )
( ) ( )
( ) ( )

.Q Q

Q Q
2

(6)

The covariance matrix above would also correspond to the distribution of the vector ⌣ ′u y( , ) if there were no spatial dependence
(because then the distribution of the vectors y and η are the same). However, the situation is different with the spatial dependence
structure of Eq. (4). In this spatial dependence case, it may be shown that the ×QI 1 vector, ⌣ = ⌣′ ′ ′u y u y( , ) , is multivariate normally
distributed with a ×QI QI covariance matrix as follows:

⌣ = ⌣ = ⎡
⎣⎢

⎤
⎦⎥

⌣ ⎡
⎣⎢ ′

⎤
⎦⎥

− − ×

× −

− − ×

× −
u y S y η

S
Ω

IDEN 0
0

IDEN 0
0

Cov( ) Cov( ) ,Q I Q I Q

Q Q I

Q I Q I Q

Q Q

( 1) ( 1)

( 1)

( 1) ( 1)

( 1) (7)

where − ×0Q I Q( 1) is a zero matrix of dimension − ×Q I Q( 1) .
The covariance matrix above corresponds to the vector ⌣ = ⌣′ ′ ′u y u y( , ) , where the vector ⌣u represents the vectorization (across

individuals) of the latent utility differentials taken with respect to the first alternative for each household. For estimation, however,
what is needed is the covariance matrix for the vector = ′ ′ ′uy u y( , ) , where the vector u represents the vectorization (across house-
holds) of the latent utility differentials taken with respect to the chosen alternative for each household. To compute this, first
construct the general covariance matrix Ω for the original + ×Q I[ ( 1)] 1 vector = ′ ′ ′Uy U y( , ) , while also ensuring all parameters are
identifiable (note that Ω is equivalently the covariance matrix of = ′ ′ ′τ ε Sη( ,( ) ) ). To do so, define a matrix D of size + ×Q I QI[ ( 1)] .
The first I rows and −I( 1) columns correspond to the first household. Insert an identity matrix of size −I( 1), after supplementing with
a first row of zeros, in the first through Ith rows and the first through −I( 1) th columns of the matrix. The rest of the elements in the
first I rows and the first −I( 1) columns take a value of zero. Next, rows +I( 1) through 2I and columns I( ) through −I2( 1) correspond
to the second household. Again position an identity matrix of size −I( 1) after supplementing with a first row of zeros into this
position. Continue this for all Q households. Put zero values in all cells without any value up to this point. Finally, insert an identity
matrix of size Q into the last Q rows and Q columns of the matrix D. Thus, for the case with two households, if the nominal variable
has 4 alternatives, the matrix D takes the form shown below:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

×

D

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 10 8 (8)

Then, the general covariance matrix of Uymay be developed as = ⌣ ′Ω DΩD . All parameters in this matrix are identifiable by virtue
of the way this matrix is constructed based on utility differences and, at the same time, it provides a consistent means to obtain the
covariance matrix ∼Ω of = ′ ′ ′uy u y( , ) that is needed for estimation (and is with respect to each individual’s chosen alternative for the
nominal variable). Specifically, to develop the distribution for the vector uy, define a matrix M of size × +QI Q I( 1). The first −I( 1)
rows and I columns correspond to the first household. Insert an identity matrix of size −I( 1) after supplementing with a column of
‘−1’ values in the column corresponding to the chosen alternative of the first household. The rest of the columns for the first −I( 1)
rows and the rest of the rows for the first I columns take a value of zero. Next, rows I( ) through −I2( 1) and columns +I( 1) through 2I
correspond to the second household. Again position an identity matrix of size −I( 1) after supplementing with a column of ‘−1’ values
in the column corresponding to the chosen alternative of the second household now. Continue this procedure for all Q households.
Finally, insert an identity matrix of size Q into the last Q rows and Q columns of the matrix M. With the matrix M as defined, the
covariance matrix ∼Ω is given by = ′∼Ω MΩM .

Next, define =μ V dM( | ), where the vector V is defined as earlier, = ′d Szγ is a ×Q( 1)-vector, and (V d| ) denotes the vertical
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concatenation of the vectors V and d so that (V d| ) is a + ×Q I( ( 1) 1) vector and μ is a ×QI( ) 1) vector. Then, by construction,
= ′ ′ ′ ∼uy u y μMVN( , ) ( ,QI

∼Ω). Partition μ and ∼Ω so that

= ⎡
⎣

⎤
⎦

= =⎡

⎣
⎢ ′

⎤

⎦
⎥

∼μ g
c Ω

Σ Σ
Σ Σ, and ,

u uy

uy y (9)

where g is a − ×Q I( ( 1) 1) subvector, c is a ×Q( 1) subvector, Σu is a − × −Q I Q I( 1) ( 1) submatrix, Σuy is a − ×Q I Q( 1) submatrix, and
Σy is a ×Q Q submatrix. The conditional distribution of u, given y, is multivariate normal with mean = + −∼ −g g y cΣ Σ ( )uy y

1

− ×Q I[ ( 1) 1vector] and variance = − ′−Σ Σ Σ Σ Σ͠ u u uy y uy
1 − × −Q I Q I[ ( 1) ( 1)matrix].

Next, let θ be the collection of parameters to be estimated: = ′ ′ ⌣ ′ ′ ′θ β γ δ Vech VechΛ Ψ[ , , ,( ( )) ,( ( )) ] , where Vech(⌣Λ ) represents the
vector of upper triangle elements of ⌣Λ . Then the likelihood function may be written as:

= × ⩽ =
∏

− × −∼

=

− − −
− ×

− − −∼ ∼ ∼
( )

θ y c u y y c gL f ϕΣ
ω

ω ω Σ ω ω ω Σ ω( ) ( ; , ) Pr[( | ) 0], 1 ( ( ); ) Φ [( ( ); ],͠
Q y

q
Q

q
Q y I Q u

Σ
Σ Σ Σ Σ Σ Σ

1

1 1 1
( 1)

1 1 1

y
y y y u u u

(10)

where ϕ (.;.)Q is the multivariate normal density function of Q dimensions, − ×Φ I Q( 1) is the multivariate normal cumulative distribution
function of − ×I Q( 1) dimensions, ωΣy is a diagonal matrix containing the square root of the diagonals of Σy, ( )ω qΣy represents the qth
diagonal element of ωΣy, and ∼ωΣu is a diagonal matrix containing the square root of the diagonals of Σ͠u.

The above likelihood function involves the evaluation of an − ×I Q( 1) -dimensional integral, which is prohibitive even for
medium-sized samples. So, the Maximum Approximate Composite Marginal Likelihood (MACML) approach of Bhat (2011), in which
the likelihood function only involves the computation of univariate and bivariate cumulative distributive functions, is used in this
paper. Details of this MACML approach are available in Bhat (2011), but conceptually is based on replacing the second term in Eq.
(10) with a surrogate function that uses the product of the joint probability of residential location choices of couplets of individuals.
To ensure constraints on the autoregressive term δ (Eq. (2)), the analyst can parameterize = ± + ∼δ δ1/[1 exp( )]. Once estimated, the

∼δ
estimate can be translated back to an estimate of δ . If spatial dependency in the form of spillover or permeation effects exists, then a
positive autoregressive parameter will be obtained.

4.4. Attributing VMT variation to different factors

The ultimate objective of this paper is to quantify the relative contributions of each of five factors to explaining variation in
household VMT. The five factors are: (1) household and person socio-economic and demographic (SED) characteristics, (2) residential
built environment (BE) attributes, (3) residential self-selection (SS) effects, (4) human socio-spatial dependency (SSD) effects, and (5)
remaining unknown or omitted factors (UF). To accomplish this, start with Eq. (4),

= +y Szγ Sη (11)

To determine an estimate of the SSD effect on the logarithm of VMT, compute the mean of the sum of squared regression of the above
equation with the estimated δ value embedded in the S vector. This mean SSR (or the mean squared regression or MSR) includes all of
the four (SED, BE, SS, and SSD) effects, with the mean sum of squared residuals (MSE) representing the effect of remaining unknown
or unobserved factors (LNVMTUF). Next, compute the mean MSR of the above equation with δ=0 (which is equivalent to an aspatial
model). The difference between the two provides the variation in logarithm of VMT (at an average household level) explained by the
SSD effect (label this LNVMTSSD). Once the SSD effect is determined, consider the aspatial VMT regression at the household level
(note that, after accommodating VMT error dependencies through the spatial-social dependence, engendered by the S matrix in Eq.
(4), there is no remaining covariance in VMT across households):

= ′ +γ zy ηq q q (12)

The vector zq is now partitioned into variables that correspond to SED characteristics, and the two dummy BE variables that
characterize the impact of two of the residential density alternatives (with the first residential density alternative serving as the base).
Let = ′ ′ ′z z z( , )q q SED q BE, , , and correspondingly partition the γ vector into = ′ ′ ′γ γ γ( , )SED BE . Also, for each individual, the error-differenced
utilities for the second and third residential alternatives (in the choice model) are correlated with the corresponding ηq error term in
the log(VMT) equation, based on Eq. (5). In the three alternative residential choice case, Eq. (5) may be rewritten as follows:
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= − = − ⌣ = ⎡
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∼ ∼ ∼ξ τ κ ξ ξ τ κ ξ η τ τ η, ,q η q q q η q q q η η q21 2 23 21 31 3 23 31 2 3 . Then, by construction, =ϑ23

= − − = − −
∼ ∼

Var κ Var ξ Var τ Var κ Var ξ Var τ Var κ( ), ( ) 1 ( ) ( ), ( ) ϑ ( ) ( ),q q η q q η q23 21 2 23 31 3
2

3 23

= = = − −∼ω Var τ ω Var τ Var η σ ω ω( ), ( ), and ( )η η η η q η η2 2 3 3
2

2 3 .

A.C. Singh et al. Transportation Research Part D 63 (2018) 23–36

31



With the notations above, rewrite Eq. (12) as:

= ′ + ′ + + + ∼γ z γ zy τ τ η .q SED q SED BE q BE η η q, , 2 3 (14)

The MSR of the above regression (label this as the aspatial SSR or ASSR) is exactly the same as the one computed earlier for Eq.
(11) with δ =0 (there are no re-estimations of the model undertaken; the estimated coefficient values from the original model are all
retained as such). This MSR can be split into that attributable to SED (LNVMTSED) by computing the degradation in MSR after setting
all elements of the γSED to zero. Next, keep the elements of the γSED vector at the estimated values, and set the elements of γBE to zero.
The degradation in the MSR of this regression relative to ASSR can be attributable to BE (LNVMTBE). Proceeding forward, the mean
variation effect attributable to self-selection SS (LNVMTSS) is essentially equivalent to + =Var τ τ( )η η2 3 +ω ωη η2 3 , which is obtained
from the estimated covariances (see Eq. (13)). The variance of ∼ηq is a measure of the unexplained variation in the aspatial model, but
the overall unexplained variation is already captured in the spatial model as LNVMTUF. Finally, to quantify the effect of each factor on
VMT, simply compute the fraction of each exp(LNVMT) contribution as a proportion of the sum of the exponentials of VMTs from
each contributing source (= exp(LNVMTSED)+ exp(LNVMTBE)+ exp(LNVMTSS)+ exp(LNVMTSSD)+ exp(LNVMTUF). These pro-
portions provide the percentage contribution at the point median VMT estimate.

5. Model estimation results

This section presents a description of model estimation results. Many alternative model specifications were tested to arrive at the
final model specification. It should be noted that a number of potential explanatory variables were not included in the residential
location (density) choice utilities because of potential endogeneity effects. Variables such as dwelling unit type, vehicle ownership,
and number of drivers may be regarded as endogenous to residential location choice and were hence omitted from the specification.
Treating such choice variables as exogenous factors could lead to endogeneity bias and adversely affect inferences that may be drawn
from the model estimation results. In addition, these dimensions are often closely related to density; for example, dense urban
environments are likely to be characterized by multi-family residential dwelling units with high levels of transit service, thus reducing
the need for owning cars or possessing a driver’s license. Including these dimensions as exogenous variables would render it difficult
to isolate the self-selection effects from exogenous variable effects because these variables are actually part of the self-selection
phenomenon. It should be recognized that the omission of these variables from the residential location density model may affect
inferences drawn because at least some of the effects of these variables is likely to be subsumed in the unexplained portion of the
variance in household VMT. The development of a more complex multi-dimensional simultaneous equations model system that can
jointly model these varied choices in an integrated framework, and thus account for their effects appropriately, remains a task for
future research. It should, however, be noted that a number of such variables are included in the household VMT regression equation.

Another key consideration in the specification of the model system estimated in this study is that no additional built environment
attributes are introduced in the VMT equation to avoid an entanglement of built environment attributes embedded in the residential
choice definition with any other built environment attributes that could be introduced separately in the household VMT regression
equation. This remains a methodological challenge to be addressed in future research efforts. In the model system estimated in this
study, the residential location choice alternatives are defined by density; and density variables are, in turn, incorporated in the VMT
equation to capture built environment effects. By doing so, it is possible to explicitly and easily tease out residential sorting effects
(represented by error covariances) from built environment effects. If additional built environment attributes were included in the
VMT equation specification, the correlation between density and these additional built environment attributes would render it
difficult to cleanly separate residential self-selection effects from true built environment effects. Future research efforts should focus
on the development of a model formulation where it is possible to separately measure residential self-selection effects and true built
environment effects in the presence of multi-collinearity between the residential location choice descriptor(s) and the built en-
vironment attributes.

Repeated attempts were made to estimate a full model specification with spatial dependency. A variety of spatial dependency
forms were specified (including two different versions of the contiguity-based definition, inverse distance and its power functions, the
inverse of exponential distance, and the shared edge length between zones) and used to define the weight matrices that represent
strength of association between observations. Every specification that was attempted yielded a spatial dependency or autoregressive
parameter (δ) that was not statistically significantly different from zero. Reasons for the statistical insignificance of the spatial
dependency parameter are not immediately clear, but the fact that the parameter was repeatedly found to be insignificant for a large
variety of specifications suggests that the spatial dependency effects may truly be insignificant in this particular data set, or there are
other unknown forces at play that are rendering this effect to be non-existent. One possible explanation for this is that significant peer
or neighbor effects may not exist for household VMT (after controlling for socio-demographic and built environment attributes).
Household VMT may largely be determined by intra-household interactions and task allocation among household members. Social
and spatial diffusion effects arising from interactions among neighbors may not be playing an important role in shaping household-
level VMT. Due to the insignificance of the spatial dependency effect, only the final non-spatial or aspatial model estimation results
are presented. In addition, the allocation of household VMT to various contributing factors omits spatial dependency effects and only
considers the three other effects (socio-economic and demographic, residential self-selection, and built environment) together with
unexplained or unknown effects.

Model estimation results for the aspatial model with self-selection are shown in Table 2. An independent model that ignores self-
selection effects engendered through error covariances was also estimated; results for that model are quite similar to those seen in the
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model with self-selection and hence the table of results for the independent model system is omitted. The residential location
(density) model component takes the form of a multinomial probit (MNP) model while the vehicle miles of travel model component
takes the form of a continuous log-linear regression model.

In the MNP model of residential location (density) choice, it can be seen that alternative specific constants for the medium and
high density categories are negative, suggesting that ceteris paribus, households are more likely to locate in low density neighbor-
hoods. Single persons are more likely, however, to locate in high density neighborhoods. Consistent with descriptive statistics seen
earlier and prior research (Cao and Fan, 2012), lower income households are more likely to locate in medium- and higher density
neighborhoods, as are households belonging to ethnic minority segments (African-American and Hispanic). Households with a higher
fraction of unemployed individuals are less likely to locate in high density neighborhoods, presumably because households in low
density neighborhoods are of larger sizes and with children (who are naturally unemployed).

In the continuous linear regression model, the fraction of individuals in the household in the middle age groups is positively
associated with household VMT production, presumably because such households are at a lifecycle stage that is associated with a
high level of trip-making, compared to households with a higher fraction of individuals in older age groups (Collia et al., 2003).
Residential location (density) is found to significantly affect household VMT, consistent with the pattern seen in Fig. 1 and as reported
extensively in the literature. Households in medium and high density neighborhoods produce fewer VMT as evidenced by the ne-
gative coefficients, with the effect amplified in the context of high density areas relative to medium density areas. As expected,
vehicle ownership is a strong predictor of household VMT with multi-vehicle owning households likely to generate more VMT than
other vehicle ownership groups.

A review of error variance-covariance estimates in the matrix ⌣Λ for the independent model system (where error covariances
across the discrete choice and linear regression model components are restricted to zero; that is, all elements of the matrix Ψ are set to
zero) and the joint model system (that accounts for self-selection effects through the elements of the Ψ matrix) reveals a statistically
significant covariance between density categories in the residential location choice model. In particular, referring to Eq. (13), the
estimated value of ϑ23 is 0.4437 (t-statistic of 8.12), and that of ϑ3

2 is 1.002 (t-statistic of 9.60) in the joint system (these estimated

Table 2
Joint residential location (density) and aspatial household VMT model with self-selection.

Variables MNP residential choice Continuous LR

Low density coef (t-stat)
(base)

Medium density coef (t-
stat)

High density coef (t-
stat)

Natural Log of vehicle miles traveled
coef (t-stat)

Constant * −0.1233 (−4.23) −0.1929 (−5.37) 0.8429 (8.4)

Family structure variables
Single Person * – 0.1839 (3.62) –
Couple * – – –
Nuclear Family * – – –
Joint Family * – – –

Household income variables [US
$/year]

Below 30,000 * 0.2145 (3.15) 0.2069 (2.83) –
30,000 to 75,000 * – – –
75,000 to 150,000 * – – –

Household race and ethnicity
African-American * 0.3342 (3.96) 0.4100 (4.84) –
Hispanic * 0.4533 (4.14) 0.6362 (5.85) –
Other races * – – –

Fractions of household in age-groups
Age 16 to 35 * – 0.1701 (2.01) –
Age 35 to 55 * – – 0.2330 (3.13)
Age 55 to 65 * – – 0.2013 (2.73)
Age above 65 * – – –

Residential density
Medium density * – – −0.4309 (−7.52)
High density * – – −0.7619 (−13.28)

Number of vehicles in household
One vehicle * – – 1.6606 (22.35)
Two or more vehicles * – – 2.5955 (32.45)
Number of workers in household * – – 0.1505 (4.70)
Presence of students in household * – – 0.1388 (2.55)
Fraction of unemployed in

household

* – −0.3073 (−3.54) –

“*” Denotes that the category considered is the base alternative.
“–” Denotes that the variable is statistically insignificant and so is not included in the specification.
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values were similar in the independent model). The positive value of ϑ23 suggests that unobserved attributes that contribute to living
in a medium (high) density configuration positively contribute to residing in a high (medium) density area (though, very technically,
the matrix ⌣Λ is a differenced utility matrix with respect to the low density category). This result is consistent with expectations.
Attitudes and lifestyle preferences that motivate an individual to seek residential locations in higher density areas are likely to
positively influence choice of residence in both medium and high density neighborhoods.

In the model with self-selection, it is found that significant error covariances exist between residing in medium or high density
neighborhoods (relative to low density living) and vehicle miles of travel. Specifically, the estimated values of ω η2 and ω η3 are 0.108
(t-statistic of 2.19) and 0.089 (t-statistic of 1.92), respectively. These significant error covariances demonstrate the importance of
modeling these choices (i.e., residential location and household VMT) jointly in a simultaneous equations modeling framework
capable of accounting for shared unobserved attributes affecting multiple endogenous variables of interest. What is interesting is that
both error covariances are positive and significant. In other words, unobserved attributes that contribute to residing in higher density
neighborhoods (relative to residing in low density neighborhoods) also contribute to an increase in household VMT after accounting
for observed exogenous covariates included in the model specification. Although this may appear counter-intuitive at first glance, it is
not necessarily so. The very unobserved attributes that contribute to seeking residential location in higher density neighborhoods
may very well contribute to higher VMT production. After controlling for built environment attributes and household socio-economic
and demographic characteristics, households that favor active lifestyles and seek a variety of activity opportunities (latent un-
observed traits) are likely to undertake more travel and hence produce more VMT than observationally equivalent households that
have different (more sedentary) lifestyle preferences.

An examination of goodness-of-fit statistics reveals that the composite log-likelihood value for the joint model with 25 parameters
is −10,233.30 while the corresponding value for the independent model (with 23 parameters) is −10,236.39. The goodness-of-fit of
the two models may be compared using the adjusted composite likelihood ratio test (ADCLRT) statistic that is approximately χ2

distributed (Bhat, 2011). The ADCLRT statistic value is 6.04, which is larger than the critical χ2 table value with two degrees of
freedom at a 95% confidence level. This shows that the model with self-selection offers a statistically significant, but not necessarily
very large, improvement in fit to the data.

6. Discussion and conclusions on the relative contribution of factors to household VMT

Because the spatial dependency parameter was found to be statistically insignificant across a wide range of specifications, model
results were used to apportion the contribution of three factors to explaining the variance in household VMT. These include: (1)
household socio-economic and demographic characteristics (SED); (2) built environment attributes of the residential zone (BE); and
(3) residential self-selection effects (SS). Any unexplained portion of the variance in VMT may then be attributed to unknown
unobserved attributes or variables omitted in the specification. It is possible that there are spatial dependency effects that the tested
model specifications were not able to capture; if such effects truly do exist, then they would be absorbed into the unexplained portion
as well.

We next adopt the methodology described in Section 4 (albeit with a slight simplification to account for the lack of significant
spatial dependency effects). The results reveal that socio-economic and demographic characteristics explain 33 percent of the var-
iation in household VMT. Built environment attributes, after controlling for self-selection effects, explain 12 percent of the variation
in VMT; self-selection effects (captured through error covariances) account for 11 percent of the variation in household VMT. That
leaves 44 percent of the variance in household VMT unexplained by socio-economic characteristics, residential built environment
attributes, and self-selection effects considered in the model specifications of this paper. From a regression analogy, that is akin to
achieving an R2 goodness-of-fit value of 0.56, which is quite consistent with (and even better than) typical goodness-of-fit statistics
obtained when estimating household-level regression models of trip-making. Within the 56 percent of household VMT variance that is
explained by the three factors, the results suggest that socio-economic and demographic characteristics account for 58.5 percent of
the explained portion, residential self-selection accounts for 19.8 percent, and built environment attributes account for 21.7 percent.
Focusing on the land use (built environment) and self-selection effects, it appears that 48 percent of the built environment effect is
attributable to self-selection, leaving the remaining 52 percent as the true built environment effect.

The relative contribution of various effects to explaining household VMT found in this paper suggests that household socio-
economic and demographic characteristics play a significant and large role (much larger than built environment and self-selection) in
shaping household VMT, a finding that has been reported by others (Badoe and Miller, 2000). Most previous studies that study the
contribution of various factors to explaining VMT do so in the context of separating true built environment effects from residential
self-selection effects. As noted earlier, Bhat et al. (2014) and Cao and Fan (2012) found that the self-selection effect is considerably
less than the built environment effect. This study finds a more even split between self-selection and true built environment effects,
suggesting that the relative contribution of these two effects may vary across geographic contexts. It should be noted that this study
utilized a New York region data set, while the Cao and Fan (2012) study utilized a data set from North Carolina and Bhat et al. (2014)
used a data set from San Francisco. Another important consideration is that this paper examines household VMT as the dependent
variable of interest; the Cao and Fan (2012) paper examines self-selection effects in the context of person miles of travel. It is plausible
that the relative contribution of these effects varies based on the choice of dependent variable. Indeed, Cao and Fan (2012) find that
the contribution of self-selection effects can be as high as 64% and 49% for driving duration and transit duration, respectively, while
Bhat et al. (2014) report self-selection contributions of the order of 41 percent and 45 percent for the number of non-motorized and
motorized tours, respectively. In addition, it is possible that the absence of a rich set of built environment attributes in the household
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VMT generation equation may have led to an under-estimation of the true built environment effects in this study. However, given that
density is generally highly correlated with other built environment attributes, it is uncertain whether the inclusion of additional built
environment variables in the model specification would necessarily yield a (much) greater built environment effect than that ob-
tained here (in the context of explaining household VMT).

There are two noteworthy aspects revealed in the analysis of this paper. First, spatial dependency effects may not be all that
significant in explaining household VMT. In the case of person-level VMT, it is likely that dependency effects play a larger role
because persons interact, at a minimum, with other household members. Nevertheless, given the large body of literature that has
found significant spatial dependency effects in the context of modeling activity-travel choices (Adjemian et al., 2010; Paleti et al.,
2013a), this is worthy of additional investigation. Second, this paper finds that household socio-economic and demographic variables
play a much larger role in explaining household VMT variation than built environment and residential self-selection effects (com-
bined). This is not surprising, given that household VMT is naturally dependent on household structure, income, and size. An
examination of person-level VMT (where VMT is scaled to a per-capita basis) may offer additional insights on the relative con-
tribution of socio-economic and demographic characteristics vis-à-vis other built environment and self-selection effects. The use of
household VMT as the dependent variable in this study may have resulted in an amplified estimate of the relative contribution of
household socio-economic and demographic characteristics (because larger households will likely generate greater VMT). None-
theless, the study results suggest that changes in built environment attributes (as considered in the model specification) may not
necessarily bring about substantial shifts in household-level VMT, possibly due to many other factors that remain unknown or
unmeasured in typical household travel surveys. Indeed, recent evidence (Polzin, 2016) suggests that vehicle miles of travel (both in
terms of aggregate total and on a per-capita basis) is attaining record high levels in the United States with the recovery of the
economy from the deep recession, despite a number of trends (e.g., gentrification and transit-oriented urban development, millen-
nials less auto-oriented than prior generations, and an increase in environmental consciousness) that would have otherwise reduced
VMT generation. Overall, based on the results from our analysis and earlier literature, there is a suggestion that socio-economic
effects drive much of the VMT changes as opposed to land use and neighborhood location self-selection effects.

As with any modeling study, the results obtained here are sensitive to the model specification. The percent of explained or
unexplained variance, and the relative magnitudes of the effects of different factors in explaining household VMT, is naturally
dependent on the model specification. The data set used in this study is derived from a typical regional household travel survey and
zonal land use information. The analysis is naturally limited by the set of variables and built environment attributes available in the
data, and the results are sensitive to the final model specification adopted in the study. Another limitation that should be noted is that
zonal density is used as the sole descriptor of the built environment; although density is strongly correlated with other built en-
vironment attributes, it is possible that the inclusion of additional built environment measures as explanatory variables in the
household VMT equation could have yielded a larger true built environment effect than that reported here. Future research efforts
should focus on including additional built environment attributes (such as proximity to transit infrastructure and land use diversity)
in the model specification to more accurately quantify the relative contribution of built environment variables in explaining
household VMT. However, this also calls for the development of a methodological formulation capable of unraveling true built
environment effects from residential self-selection effects when explanatory variables correlated with the residential location de-
scriptor variable(s) are included in the household VMT equation. Another area for future research involves the further exploration of
social-spatial dependency effects that were found to be insignificant in this study. Future research efforts should strive to employ a
finer spatial resolution with a view to better capture interaction effects that could be masked when using more aggregate zonal
definitions. Finally, there is a need for fundamental research that aims to advance an understanding of the drivers of household VMT.
In this study, it is found that 44% of the variance remains unexplained, clearly pointing to the limited understanding in the profession
of the factors that shape household VMT. Research efforts aimed at identifying causal factors that contribute to household and person
VMT should continue, with a view to help inform land use design and transportation policy.
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