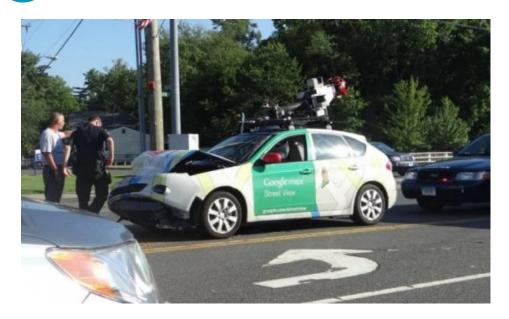
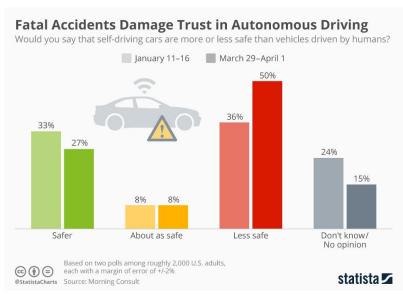
A LATENT-VARIABLE AND LATENT-CLASS APPROACH


EVALUATING CONSUMER'S PERCEPTIONS OF SAFETY AND INTENTION TO ADOPT AUTONOMOUS VEHICLE TECHNOLOGY

Abhilash C. Singh, Patrícia S. Lavieri and Chandra R. Bhat


The University of Texas at Austin

Current Scenario

- 2016: First death involving an autonomous car
- 2018: Autonomous Uber killed a woman who was walking outside of the cross-walk

Public opinion

- Interest and trust in AVs has dropped in the past two years (Abraham et al., 2017; J.D. Powers, 2017; Deloitte, 2017)
- Could "safety perception" be a reason to hold back a buyer? (Becker and Axhausen, 2017)
- Increased disbelief in AV safety and skepticism toward the ability of this technology to work perfectly

Age differences in willingness to use automation in vehicles: (Abraham et al., 2017)

		16-24	25-34	35-44	45-54	55-64	65-74	75+
	No Automation*	12%	8%	10%	6%	5%	4%	3%
	Emergency Only	18%	11%	16%	16%	15%	12%	17%
2016	Help Driver*	27%	25%	21%	<mark>41%</mark>	<mark>44%</mark>	<mark>56%</mark>	<mark>52%</mark>
	Partial Autonomy	16%	15%	19%	13%	17%	14%	15%
	Full Automation*	<mark>26%</mark>	<mark>40%</mark>	<mark>34%</mark>	23%	19%	14%	13%
	No Automation	0%	3%	4%	3%	2%	2%	1%
	Emergency Only*	24%	15%	11%	13%	10%	10%	10%
2017	Help Driver*	<mark>46%</mark>	<mark>43%</mark>	<mark>49%</mark>	<mark>55%</mark>	<mark>63%</mark>	<mark>64%</mark>	<mark>69%</mark>
	Partial Autonomy	16%	19%	15%	14%	13%	14%	10%
	Full Automation*	14%	20%	21%	15%	12%	10%	10%

*: Age differences significant at α =0.05

An Application: Determinants of individuals' safety perceptions and willingness to adopt AV technology

Latent Segments based on lifestyle

- ☐ Endogenous latent-class segmentation to account for group taste heterogeneity
- ☐ Assumption: Groups of individuals with contrasting tech-savviness, time-sensitivity and car-dependency may differ in future AV adoption
- ☐ Examples:
 - The intensity with which the perception of AV safety might impact preferences toward AV adoption might also differ across these groups.
 - The level of tech-savviness of an individual is expected to influence both his/her car-dependency style and AV preference

- ☐ Latent classes based on:
 - Tech Savviness
 - I frequently use online banking services,
 - I frequently purchase products online,
 - Learning how to use new smartphone apps is easy for me
 - Time Sensitivity
 - Even if I can use my travel time productively, I still expect to reach my destination as fast as possible;
 - With my schedule, minimizing time traveling is very important to me.
 - Car Dependency
 - Car availability,
 - Mileage driven in the past year
 - Commute mode

Behavioral and analytical framework

Latent Variables Endogenous Variables Exogenous Variables Socio-demographic Ordinal Techcharacteristics **Tech-Savviness** Savviness **SEM** MEM indicators Gender Time-Sensitivity indicators Age Time-Race Car-Dependency Sensitivity indicators Education Household Income Household structure Nominal Car-**Residential Location** Willingness to pay Dependency Use of technology for AV

MEM

Main Outcome

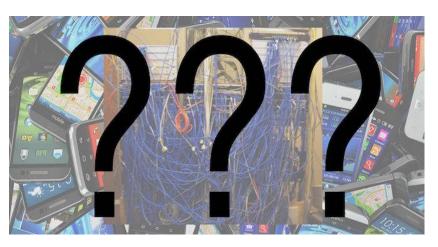
Imagine that you are planning to buy a car and self-driving cars are an available option. Consider also that ride-sourcing services already operate with self-driving cars. Which of the following options would you choose?

value	N	%	cumu. %
I would buy a regular vehicle (that is not self-driving). I still want to drive myself.	625	40.09	40.09
I would buy a self-driving car only if it was exactly the same price as a regular vehicle (that is not self-driving).	420	26.94	67.03
I would buy a self-driving car only if it was no more than \$5,000 (five thousand) dollars more expensive than a regular vehicle (that is not self-driving).	392	25.14	92.17
I would buy a self-driving car even if it was more than \$5,000 (five thousand) dollars more expensive than a regular vehicle (that is not self-driving).	122	7.83	100
Total	1559	100	

Results

	Structural Equations Model Component Results							
Variables (base category)	Tech-savviness		Time-se	nsitivity	Car-dependency			
	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat		
Gender (male)								
Female			0.181	2.76				
Age (≥55 years)								
18 to 34	1.068	10.7			-0.289	-3.89		
35 to 44	0.839	9.53	0.271	3.47	-0.289	-3.89		
45 to 54	0.437	5.38						
Race (other races)								
Non-Hispanic White					0.207	2.36		
Education (≤ undergraduate degree)								
Graduate degree					-0.184	-2.27		
Employment (full-time or self-employed)								
Part-time employee	-0.374	-3.27	-0.377	-3.25				

	Structural Equations Model Component Results						
Variables (base category)	Tech-savviness		Time-se	nsitivity	Car-dependency		
	Coeff.	t-stat	Coeff.	t-stat	Coeff.	t-stat	
Household income (< \$50,000)							
\$50,000-\$99,999	0.272	2.3			0.519	3.88	
\$100,000-\$149,999	0.441	3.75			1.004	6.83	
\$150,000-\$199,999	0.664	5.06			1.004	6.83	
\$200,000 or more	0.797	5.81			1.424	7.53	
Household composition (multi-worker)							
Single person	0.632	6.17					
Single worker multi- person	1.904	12.45					
Correlations between latent variables							
Tech-savviness	1	n/a					
Time-sensitivity	0.174	4.02	1	n/a			
Car-dependency					1	n/a	



SEGMENTS IDENTIFIED

Group 1: Group 2:

- ☐ Tech-savvy ☐ Non tech-savvy
- ☐ Do not feel constrained by ☐ Feel constrained by time

Tech-savvy group

Higher the perception of safety, higher is the WTP for AVs
Higher the appeal of AVs to inspire productive use of travel time, higher is the WTP for AVs
Owning a vehicle with more than three automated features increases the WTP for AVs
Higher income increases the WTP for AVs
No apparent distinction observed between not buying an AV and buying an AV at the same cost as a regular vehicle

Non tech-savvy group

Higher the perception of safety, higher is the overall intention to adopt AVs, but no distinction in WTP for various automation levels
Higher the appeal of AVs to inspire productive use of travel time, higher is the overall intention to adopt AVs, but no distinction in WTP for various automation levels
Owning a vehicle with automated features decreases the intention to adopt AVs

Implications

Need to be careful about AV knowledge of the population.
Perception of safety plays an important role in the overall intention to adopt AVs.
Self-driving vehicles are appealing because they allow the use of travel time more effectively.
Current ownership of partially automated vehicles may not inform future choice of AVs.

Thank You!